Václav Mentlík

DIELEKTRICKÉ PRVKY A SYSTÉMY

Praha 2006

Pro bezporuchový chod elektrických zařízení je rozhodující stav a chování jejich dielektrických podsystémů, jejichž vlastnosti jsou dané strukturou částí, z nichž jsou sestaveny. Pro správné chápání vlastností a také opodstatněnou volbu prvků tohoto podsystému – aplikovaných materiálů – se neobejdeme bez poznatků vysvětlujících a přibližujících jejich chování. Je třeba pochopit děje ve struktuře a jejich vazbu a odraz ve vnějším chování i vlastnostech materiálů. Při vlastní výrobě zařízení přistupuje další aspekt ve formě vznikajících vzájemných interakcí ovlivňujících vlastnosti materiálů i výrobků. Dále musíme respektovat interakci mezi zařízením a prostředím v němž pracuje. I zde bereme v úvahu fyzikální zákonitosti a hledáme jejich souvislost s měnícími se vlastnostmi materiálů i zařízení.

Výše uvedené skutečnosti jsou vedoucí myšlenkou této knihy. Po objasnění základních skutečností týkajících se problematiky dielektrik a izolantů, je její další část věnována základním aspektům fyziky dielektrik nahlíženým z aplikačního hlediska vztahu struktura – vlastnost s cílem usnadnit proniknutí do zmíněných souvislostí.

Procesy probíhající v izolantech, jejich znalost a vazby se úzce váží na akutní potřebu získávání vydatných a plně výpovědischopných informací o vlastnostech prvků ve výchozím stavu i během zpracování, kdy se plně uplatňují vzájemné interakce prvků, technologických procesů a prostředí výroby. Tato skutečnost vede k nutnosti znalostí z oblasti diagnostiky izolantů, sloužící ke zjišťování nutných informací. Se současným nárůstem požadavků na elektrická zařízení a jejich částí, význam této problematiky neustále roste. Proto je tematika diagnostiky izolantů další náplní knihy.

Uvedený přehled hlavních skupin a představitelů izolantů usnadňuje orientaci v této oblasti s ohledem na jejich vlastnosti a zejména teplotní odolnost – klíčové hledisko jejich třídění.

Publikace je určena všem, kteří ve své práci či studiu přicházejí s problematikou dielektrických prvků a systémů do kontaktu a chtějí proniknout do jejich světa.

Václav Mentlík

Dielektrické prvky a systémy

Bez předchozího písemného svolení nakladatelství nesmí být kterákoli část kopírována nebo rozmnožována jakoukoli formou (tisk, fotokopie, mikrofilm nebo jiný postup), zadána do informačního systému nebo přenášena v jiné formě či jinými prostředky.

Autoři a nakladatelství nepřejímají záruku za správnost tištěných materiálů. Předkládané informace jsou zveřejněny bez ohledu na případné patenty třetích osob. Nároky na odškodnění na základě změn, chyb nebo vynechání jsou zásadně vyloučeny.

Všechny registrované nebo jiné obchodní známky použité v této knize jsou majetkem jejich vlastníků. Uvedením nejsou zpochybněna z toho vyplývající vlastnická práva.

Veškerá práva vyhrazena

© Prof. Ing. Václav Mentlík, CSc., Plzeň 2006

© Nakladatelství BEN – technická literatura, Věšínova 5, Praha 10

Václav Mentlík: Dielektrické prvky a systémy BEN – technická literatura, Praha 2006

vydání

ISBN 80-7300-189-6

Obsah

1	DIELEKTRIKA A IZOLANTY			
2	ZÁKL	ADNÍ ASPEKTY FYZIKY DIELEKTRIK	15	
	2.1 Int	zerakce elektrického pole a látek	16	
	2.1.1	-		
	2.1.2	Mikroskopické hledisko na polarizaci dielektrika	22	
	2.1.3			
	2.2 Me	echanismy polarizací a jejich druhy	28	
	2.2.1	Obecně o polarizaci	28	
	2.2.2	Deformační polarizace	30	
	2.2.2	.1 Elektronová polarizace	30	
	2.2.2	.2 Iontová polarizace	31	
	2.2.2	.3 Polarizace pružně vázaných dipólových momentů	32	
	2.2.3			
	2.2.3	.1 Iontová relaxační polarizace	33	
	2.2.3	.2 Dipólová relaxační polarizace	39	
	2.2.4	Migrační polarizace	41	
	2.2.4	.1 Účinky prostorového náboje	45	
	2.2.4	.2 Dynamický model nehomogenního dielektrika	45	
	2.3 Di	elektrikum v elektrostatickém poli	49	
	2.4 Di	elektrikum ve střídavém elektrickém poli	55	
		elektrická absorpce		
	2.6 Ele	ektrická vodivost dielektrik	69	
	2.6.1	Elektrická vodivost plynných izolantů	70	
	2.6.1	.1 Pohyblivost volných nosičů elektrického náboje		
		v plynných izolantech	74	
	2.6.1	.2 Voltampérová charakteristika plynných izolantů	76	
	2.6.2	Elektrická vodivost kapalných izolantů	78	
	2.6.2	.1 Teplotní závislost konduktivity kapalných izolantů	83	
	2.6.2	.2 Závislost elektrické vodivosti na struktuře kapalného	,	
		izolantu	86	

OBSAH 3

		2.6.3	Elektrická vodivost pevných izolantů	87
		2.6.3.1	Povrchová vodivost pevných izolantů	92
	2.7	Diele	ektrické ztráty	94
		2.7.1	Dielektrické ztráty v plynných izolantech	104
		2.7.2	Dielektrické ztráty v kapalných izolantech	106
		2.7.3	Dielektrické ztráty v pevných izolantech	109
		2.7.4	Dielektrické ztráty homogenních a nehomogenních	
			izolantů	110
	2.8	Elekt	rická pevnost	111
		2.8.1	Elektrická pevnost plynných izolantů	113
		2.8.1.1	Townsendovy výboje	114
		2.8.1.2	Paschenův zákon	118
		2.8.1.3	Kanálový výboj	119
		2.8.1.4	Výboje v nehomogenním poli	120
		2.8.1.5	Závislost elektrické pevnosti plynů na frekvenci	122
		2.8.2	Elektrická pevnost kapalných izolantů	123
		2.8.3	Elektrická pevnost pevných izolantů	127
		2.8.3.1	Čistě elektrický průraz	128
		2.8.3.2	Tepelný průraz	129
		2.8.3.3	Elektrochemický průraz – stárnutí izolantů	133
3	D	IAGNO	OSTIKA IZOLANTŮ A JEJÍ METODY	137
	3.1	Elekt	rotechnologická diagnostika v oblasti izolantů	138
		3.1.1	Základní aparát a aspekty diagnostiky izolantů	138
		3.1.2	Aktuální diagnostické procesy a metody	140
	3.2	Stand	dardní podmínky při diagnostice izolantů	141
	3.3	Abso	rpční a resorpční charakteristiky a z nich určované	
		parar	metry	144
		3.3.1	Obecné aspekty problematiky	144
		3.3.2	Diagnostické metody pro tuto oblast	146
		3.3.2.1	Voltampérmetrová metoda	146
		3.3.2.2	Metoda Wheatstonova můstku	147
		3.3.2.3	Kompenzační metoda	147

	3.3.3 Metodika zkoušek a jejich vyhodnocování		148
	3.3.4	Polarizační indexy	154
	3.3.5	Redukované resorpční křivky (RRK)	154
3.4	Ztráto	ový činitel a permitivita	
	3.4.1	Můstkové metody	156
	3.4.1.1	Metoda Scheringova můstku	156
	3.4.1.2	Metoda čtyřkapacitního můstku	159
		Metoda modifikovaného můstku pro rozsah 30 Hz	
		do 300 kHz	159
	3.4.1.4	Automatický můstek pro měření dielektrických ztrát	161
	3.4.2	Rezonanční metoda měřením nakmitaného napětí	
		(Q-metr)	161
	3.4.3	Vzorky a elektrodové systémy pro měření	
		dielektrických ztrát	163
	3.4.4	Výsledky měření a jejich přesnost	166
3.5	Elekt	rická pevnost	167
	3.5.1	Elektrody a experimentální vzorky	167
	3.5.2	Provedení zkoušek elektrické pevnosti	172
3.6	Mech	nanické vlastnosti izolantů	175
	3.6.1	Tahové vlastnosti izolantů	176
	3.6.2	Ohybové vlastnosti izolantů	181
	3.6.3	Rázová houževnatost izolantů	185
3.7	Možr	nosti měření rozložení prostorového náboje	190
3.8		ování entalpie izolantů	
	3.8.1	Obecně k principu metody	194
	3.8.2	Provedení analýz a aplikace jejich výsledků	195
3.9	Určov	vání teploty skelného přechodu ($T_{\rm g}$) izolantů	
	3.9.1	Obecně k principu metody	
	3.9.2	Průběh zkoušky a využití získaných výsledků	
3.10		ování hmotnostních úbytků izolantů	
	3.10.1	Obecně k principu metody	
	3.10.2	Průběh zkoušky a využití získaných výsledků	

OBSAH 5

4	\mathbf{E}	LEKTI	ROIZOLAČNÍ SYSTĚMY A JEJICH PRVKY	207
	4.1	Teplo	otní klasifikace elektroizolačních materiálů	208
	4.2	Přiřa	zení charakteristických materiálů jednotlivým	
		teplo	tním třídám	209
	4.3	Dráž	kové izolace	212
	4.4	Nom	ex®	214
	4.5	Kapt	on®	215
	4.6	Kom	pozitní materiály	215
	4.7	Slída	a slídové výrobky	217
		4.7.1	Slída	217
		4.7.1	Slídové výrobky	217
		4.7.1.1	Mikanity	218
		4.7.1.2	Materiály z rekonstruované slídy	219
	4.8	Izola	ční systémy transformátorů	220
		4.8.1	Materiály pro izolační systémy transformátorů	220
	4.9	Izola	ční systémy točivých elektrických strojů	221
		4.9.1	Nízkonapěťové izolační systémy točivých	
			elektrických strojů	221
		4.9.2	Vysokonapěťové izolační systémy točivých	
			elektrických strojů	
		4.9.2.1	,	
		4.9.2.2		
		4.9.2.3	Porovnání technologií VPI a resin-rich	225
L	ITE	RATU	RA	226
R	E.JS	TŘÍK		227
				/
K			KLADATELSTVÍ ECHNICKÁ LITERATURA	237
A			RODEJEN TECHNICKÉ LITERATURY	
P	ÁR	SLOV	O NAKLADATELSTVÍ	240

ÚVOD

Základním elementem při výrobě elektrických zařízení je použitý materiál. Ten chápeme jednak jako pro daný účel upravenou látku, jednak jako systém sestávající z podřazených podsystémů a prvků. Těmi jsou myšleny z hlediska současného stavu vědění "nedělitelné" elementární částice. Dotyčné elektrické zařízení pochopitelně opět chápeme jako systém sestávající z funkčních podsystémů a sice mechanického, magnetického, elektrického, dielektrického a termoventilačního. Z úhlu spolehlivostních aspektů, kdy elektrické zařízení chápeme jako sériový spolehlivostní řetězec u něhož výpadek jednoho článku znamená konec funkčnosti celého zařízení, je dielektrický tím podsystémem, který svojí povahou obvykle nejvíce ovlivňuje to, co od těchto zařízení požadujeme – jejich životnost a spolehlivost. Dielektrický podsystém je tedy klíčovým pro správnou činnost elektrického zařízení.

Chování dielektrického podsystému je funkcí fyzikálních vlastností jeho jednotlivých elementů. Elektrotechnik se tak, aby správně chápal jednotlivé vlastnosti materiálů, neobejde při své práci a volbě materiálů, bez poznatků vysvětlujících a přibližujících chování izolantů vycházející z dějů odehrávajících se v jeho struktuře. Musí chápat dění ve struktuře a vazbu či odraz těchto dějů ve vnějším obrazu izolantu – jeho vlastnostech. Při vlastní výrobě přistupuje další moment a sice interakce, které zde vznikají a pochopitelně také ovlivňují finální vlastnosti výrobku. V neposlední řadě musíme vzít v úvahu i interakce mezi zařízením a prostředím v němž pracuje. I zde je nutné brát v úvahu fyzikální zákonitosti a umět najít jejich souvislost s měnícími se vlastnostmi materiálů i zařízení.

Souvislosti struktury a vlastností se úzce váží na akutní potřebu získávání vydatných a plně relevantních informací o prvcích a to ve výchozím stadiu i během zpracování, kdy se plně uplatňují vzájemné interakce prvků, technologických procesů a prostředí výroby. To vede k nutnosti znalostí z oblasti diagnostiky sloužící ke zjišťování uvedených nutných informací. Je třeba připomenout, že význam těchto informací neustále roste.

Uvedené skutečnosti naznačují důvod, proč se zabývat elementy dielektrického podsystému, pronikat do souvislostí struktura – vlastnost a chápat zákonitosti jejich interakcí s prostředím. To vedlo ke snaze zpřístupnit dostupnou formou zmíněné skutečnosti a tím ke zrodu této publikace. Je určena všem, kteří ve své činnosti – práci či studiu – přicházejí s uvedenou problematikou do styku.

Je milou povinností autora upřímně poděkovat panu Prof. Ing. Danielu Mayerovi, DrSc., Ing. Lumíru Šaškovi, CSc., Doc. Ing. Pavlu Kalábovi, CSc. a Pavlu Šebíkovi za cenné rady a připomínky, dále kolegům Ing. Jiřímu Langovi, Ph.D. a Ing. Robertu Vikovi za účinnou pomoc při vzniku textů a obrázků knihy.

Za svůj vznik kniha děkuje výzkumnému záměru MŠMT České republiky MSM 4977705131 "Diagnostika interaktivních dějů v elektrotechnice", jehož je autor vedoucím řešitelem.