OBSAH

1. Proudové pole	1
2. Elektrostatické pole	
3. Magnetizmus	15
4. Střídavý proud	20
5. Polovodiče	
6. Průchod proudu kapalinou a plynem	35
7. Měření	
8. Silnoproud	38
9. Autoelektronika	
10. Zesilovače	63
11. Napájecí zdroje	68
12. Číslicová technika	71

Úvod

Tato publikace je určená žákům SOU a SOŠ, pro které slaboproudá elektronika není hlavním studijním oborem a kteří se ji učí pouze stručně. Jedná se hlavně o obory Silnoproud, Autoelektrikář a Automechanik. Tím zároveň doplňuje moji učebnici Středoškolská fyzika. Je vhodná i pro žáky základních škol, kteří se s tímto oborem chtějí alespoň stručně seznámit. Obsahuje celou řadu praktických informací, které jsou důležité i pro neodborníky a které patří k všeobecnému vzdělání každého člověka.

Hlavní důraz je kladen na praktické využití získaných poznatků, které zde většinou předkládám bez hlubšího zdůvodnění. Závěrečné kapitoly popisují praktické použití základních znalostí v silnoproudé elektronice a autoelektronice, a jsou doplněny základy slaboproudé techniky.

1 Proudové pole

1.1 Základní pojmy

Elektrický proud je dán uspořádaným pohybem elektrických nábojů v určitém směru. Elektrický proud značíme písmenem **I**, jednotkou je **ampér (A)**. Definujeme jej pomocí silových účinků proudového pole. Ampér je základní jednotka v soustavě SI. Pomocí něj definujeme další elektrické veličiny.

$$I = Q/t$$
 [A, C, s]

Proud 1 A představuje náboj jednoho coulombu, který projde vodičem za 1 sekundu. Elektrický náboj značíme Q a udáváme jej v coulombech (C).

V každém atomu existuje kladný náboj – **proton** a záporný náboj – **elektron**. Náboj nelze od částice oddělit. Nejmenší velikost má náboj elektronu. Označujeme jej ${\bf e}=1.602$. 10^{-19} C. $(1~{\rm C}=6,242~.~10^{18}$ elektronů). Hmotnost elektronu ${\rm m_e}=9,11~.~10^{-28}$ kg. Vidíme, že náboj jednoho elektronu je velmi malý, menší než si dovedeme představit. Účinky elektrického proudu (obrovského množství elektronů pohybujících se stejným směrem) jsou dobře patrné a všichni je známe (svítící žárovka, točící se motor, atd).

Elektrický náboj se udává často v **ampérhodinách** (Ah). 1 Ah = 3 600 As = 3 600 C. Touto veličinou se udává např. náboj (nepřesně kapacita) baterie.