GP2D02

Features
1. Impervious to color and reflectivity of reflective object
2. High precision distance measurement output for direct connection to microcomputer
3. Low dissipation current at OFF-state
 (dissipation current at OFF-state: TYP. 3 µA)
4. Capable of changing of distance measuring range through change the optical portion (lens)

Applications
1. Sanitary sensors
2. Human body sensors for consumer products such as electric fans and air conditioners
3. Garage sensors
 * PSD: Position Sensitive Detector

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_{CC}</td>
<td>- 0.3 to + 10</td>
<td>V</td>
</tr>
<tr>
<td>Input terminal voltage</td>
<td>V_{in}</td>
<td>- 0.3 to + 3</td>
<td>V</td>
</tr>
<tr>
<td>Output terminal voltage</td>
<td>BV_O</td>
<td>- 0.3 to + 10</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>T_{opr}</td>
<td>- 10 to + 60</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{ag}</td>
<td>- 40 to + 70</td>
<td>°C</td>
</tr>
</tbody>
</table>

*1 Open drain operation input

Outline Dimensions

(Unit: mm)

![Diagram of GP2D02](image)

Block Diagram

- Signal processing circuit
- LED drive circuit
- Control circuit
- Reflective object

Applications

1. Sanitary sensors
2. Human body sensors for consumer products such as electric fans and air conditioners
3. Garage sensors

* PSD: Position Sensitive Detector

Operating Supply Voltage

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>4.4 to 7</td>
<td>V</td>
</tr>
</tbody>
</table>

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP’s devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP’s device.”
Electro-optical Characteristics

(Ta=25°C, Vcc=5V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance measuring range</td>
<td>ΔL</td>
<td>*1</td>
<td>10</td>
<td>-</td>
<td>80</td>
<td>cm</td>
</tr>
<tr>
<td>Output terminal voltage</td>
<td>V\text{OH}</td>
<td>Output voltage at High</td>
<td>L = 20cm</td>
<td>V\text{CC} - 0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>V\text{OL}</td>
<td>Output voltage at Low</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>Distance characteristics of output</td>
<td>D</td>
<td>L = 80cm, *1</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>DEC</td>
</tr>
<tr>
<td></td>
<td>ΔD</td>
<td>Output change at L=80 cm to 20 cm, *1</td>
<td>48</td>
<td>58</td>
<td>68</td>
<td>DEC</td>
</tr>
<tr>
<td>Dissipation current at operating</td>
<td>I\text{CC}</td>
<td>L = 20cm, *1, *2</td>
<td>-</td>
<td>22</td>
<td>35</td>
<td>mA</td>
</tr>
<tr>
<td>Dissipation current at OFF-state</td>
<td>I\text{off}</td>
<td>L = 20cm, *1</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>μA</td>
</tr>
<tr>
<td>Vin terminal current</td>
<td>I\text{vin}</td>
<td>Vin = 0V</td>
<td>-</td>
<td>-</td>
<td>170</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>280</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Note: L : Distance to reflective object
* DEC : Decimalized value of sensor output (8-bit serial)
*1 Reflective object : White paper (reflectivity : 90%)
*2 Average dissipation current value during distance measuring operation when detecting of input signal, Vin as shown in the timing chart
*3 Vin terminal : Open drain drive input.

Conditions:
- Vin terminal current at Vin OFF-state : -1 μA
- Vin terminal current at Vin ON-state : 0.3V

Test Circuit

1. Test circuit

![Test Circuit Diagram](image)

2. Vin input signal for measurement
Fig. 1 Distance Measuring Output vs. Distance to Reflective Object

- **White paper:** KODAK made gray chart R-27, white surface (reflectivity: 90%)
- **Gray paper:** KODAK made gray chart R-27, gray surface (reflectivity: 18%)
Test Method for Sensing Range Characteristics

Reflective object
White paper (reflectivity : 90%)
Detecting portion
Emitting portion
Sensor

Test Method for Anti External Disturbing Light Characteristics

Reflective object
KODAK made white paper (reflectivity : 90%)
Illuminance meter
Sensor
Sunlight

Fig. 2 Detection Distance vs. Sensing Range

Detection distance L (cm)

Sensing range X (mm)

- Sensing distance : 80 cm
- Sensing distance : 50 cm
- Sensing distance : 20 cm

Fig. 3 Detection Distance vs. Illuminance

Detection distance L (cm)

Illuminance (lx)

- 50cm
- 30cm
- 15cm

0 5000 10000 15000 20000 25000 30000

0 10 20 30 40 50 60 70 80 90 100

50cm
30cm
15cm
NOTICE

The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.

Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:

(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- Personal computers
- Office automation equipment
- Telecommunication equipment [terminal]
- Test and measurement equipment
- Industrial control
- Audio visual equipment
- Consumer electronics

(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).

Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.

If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.

This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.