The Data Book Project

DatasheetArchive.com has launched an ambitious effort to digitize thousands of obsolete data books and technical manuals, making them searchable via the DatasheetArchive website.

Scroll down to see the scanned document.
Features

GUARANTEED LOW NOISE FIGURE
2.2 dB Max. at 2 GHz, 1.8 dB Typical

HIGH GAIN
12.0 dB Typical Gain at NF Bias Conditions

RUGGED HERMETIC PACKAGE
Co-fired Metal/Ceramic Construction

Description

The 2N6618 (HXTR-6103) is an NPN bipolar transistor designed for minimum noise figure at 2 GHz. The device utilizes ion implantation techniques and Ti/Pt/Au metallization in its manufacture. The chip is provided with scratch protection over its active area.

These devices are supplied in the HPAC-100, a rugged metal/ceramic hermetic package, and are capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Electrical Specifications at $T_{CASE} = 25^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters And Test Conditions</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_{CES}</td>
<td>Collector Emitter Breakdown Voltage at $I_C = 100\mu A$</td>
<td>MIL-STD-750</td>
<td>V</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CEO}</td>
<td>Collector Emitter Leakage Current at $V_{CE} = 10V$</td>
<td></td>
<td>nA</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CEO}</td>
<td>Collector Cut Off Current at $V_{CE} = 10V$</td>
<td></td>
<td>nA</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_{FE}</td>
<td>Forward Current Transfer Ratio at $V_{CE}=10V, I_C=3mA$</td>
<td></td>
<td></td>
<td>50</td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>F_{MIN}</td>
<td>Minimum Noise Figure at 2 GHz</td>
<td></td>
<td>dB</td>
<td>1.8</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>G_a</td>
<td>Associated Gain at 2 GHz</td>
<td></td>
<td>dB</td>
<td>11.0</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>M_{MIN}^{**}</td>
<td>Minimum Noise Measure</td>
<td></td>
<td></td>
<td>1.90</td>
<td>2.35</td>
<td></td>
</tr>
</tbody>
</table>

$*300 \mu s$ wide pulse measurement at $\leq 2\%$ duty cycle.

$** M_{MIN} = 10 \log \left(1 + \frac{F_{MIN} - 1}{1 - 1/G_a} \right)$ Noise measure (M_{MIN}) is the system noise figure of an infinite cascaded chain of identical amplifier stages. F_{MIN} and G_a specified as power ratios.
Recommended Maximum Continuous Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCEO</td>
<td>Collector to Emitter Voltage</td>
<td>16V</td>
</tr>
<tr>
<td>VEOB</td>
<td>Emitter to Base Voltage</td>
<td>1.0V</td>
</tr>
<tr>
<td>IC</td>
<td>DC Collector Current</td>
<td>10 mA</td>
</tr>
<tr>
<td>PT</td>
<td>Total Device Dissipation</td>
<td>150 mW</td>
</tr>
<tr>
<td>TJ</td>
<td>Junction Temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>-65°C to +200°C</td>
</tr>
</tbody>
</table>

Notes:
1. Operation of this device in excess of any one of these conditions is likely to result in a reduction in device mean time between failure (MTBF) to below the design goal of 1 x 10^7 hours at T_J = 175°C (assumed Activation Energy = 1.5 eV). Corresponds to maximum rating for 2N6618.
2. T_CASE = 25°C.
3. Derate at 3.3 mW/°C, T_C ≥ 155°C.

Absolute Maximum Ratings *

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCEO</td>
<td>Collector to Emitter Voltage</td>
<td>35V</td>
</tr>
<tr>
<td>VEOB</td>
<td>Emitter to Base Voltage</td>
<td>20V</td>
</tr>
<tr>
<td>IC</td>
<td>DC Collector Current</td>
<td>1.5V</td>
</tr>
<tr>
<td>PT</td>
<td>Total Device Dissipation</td>
<td>20 mA</td>
</tr>
<tr>
<td>TJ</td>
<td>Junction Temperature</td>
<td>300°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Maximum Storage Temperature</td>
<td>250°C</td>
</tr>
<tr>
<td></td>
<td>Lead Temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Soldering 10 seconds each lead)</td>
<td>+250°C</td>
</tr>
</tbody>
</table>

*Operation in excess of any one of these conditions may result in permanent damage to this device.

Figure 1. Typical G_A(max), F_MIN and Associated Gain vs. Frequency at V_CE = 10V, I_C = 3 mA.

Figure 2. Typical F_MIN and Associated Gain vs. Collector Current at 2 GHz for V_CE = 10V (Tuned for F_MIN).

Figure 3. Typical S_21E vs. Bias at 2 GHz.
Figure 4. Typical Noise Parameters at $V_{CE} = 10V$, $I_C = 3$ mA.

Typical S-Parameters $V_{CE} = 10V$, $I_C = 3$ mA

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>S_{11}</th>
<th>S_{21}</th>
<th>S_{12}</th>
<th>S_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.93</td>
<td>-11.5</td>
<td>16.2</td>
<td>6.46</td>
</tr>
<tr>
<td>200</td>
<td>0.89</td>
<td>-23.0</td>
<td>17.1</td>
<td>7.13</td>
</tr>
<tr>
<td>300</td>
<td>0.86</td>
<td>-34.0</td>
<td>16.4</td>
<td>6.58</td>
</tr>
<tr>
<td>400</td>
<td>0.83</td>
<td>-44.0</td>
<td>15.9</td>
<td>6.26</td>
</tr>
<tr>
<td>500</td>
<td>0.79</td>
<td>-54.0</td>
<td>15.6</td>
<td>6.02</td>
</tr>
<tr>
<td>600</td>
<td>0.75</td>
<td>-65.0</td>
<td>15.4</td>
<td>5.91</td>
</tr>
<tr>
<td>700</td>
<td>0.71</td>
<td>-73.0</td>
<td>15.0</td>
<td>5.62</td>
</tr>
<tr>
<td>800</td>
<td>0.68</td>
<td>-81.0</td>
<td>14.4</td>
<td>5.25</td>
</tr>
<tr>
<td>900</td>
<td>0.65</td>
<td>-91.0</td>
<td>14.0</td>
<td>4.99</td>
</tr>
<tr>
<td>1000</td>
<td>0.62</td>
<td>-97.0</td>
<td>13.5</td>
<td>4.72</td>
</tr>
<tr>
<td>1500</td>
<td>0.52</td>
<td>-129.0</td>
<td>11.4</td>
<td>3.71</td>
</tr>
<tr>
<td>2000</td>
<td>0.50</td>
<td>-151.0</td>
<td>9.3</td>
<td>2.93</td>
</tr>
<tr>
<td>2500</td>
<td>0.50</td>
<td>-169.0</td>
<td>7.8</td>
<td>2.45</td>
</tr>
<tr>
<td>3000</td>
<td>0.49</td>
<td>175.0</td>
<td>6.5</td>
<td>2.12</td>
</tr>
<tr>
<td>3500</td>
<td>0.54</td>
<td>155.0</td>
<td>5.4</td>
<td>1.87</td>
</tr>
<tr>
<td>4000</td>
<td>0.52</td>
<td>156.0</td>
<td>4.5</td>
<td>1.67</td>
</tr>
<tr>
<td>5000</td>
<td>0.53</td>
<td>140.0</td>
<td>2.6</td>
<td>1.35</td>
</tr>
<tr>
<td>6000</td>
<td>0.48</td>
<td>120.0</td>
<td>0.9</td>
<td>1.11</td>
</tr>
</tbody>
</table>